

VQ-HPS: Human Pose and Shape Estimation in a Vector-Quantized Latent Space

Guénolé Fiche¹

¹CentraleSupélec, IETR UMR CNRS 6164, France ³Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Spain ²Inria, UGA, CNRS, LJK, France The 18th European Conference on Computer Vision (ECCV), Milano, Italy, 2024

1. Introduction

Human mesh recovery (HMR) aims to regress a 3D human body model from an image.

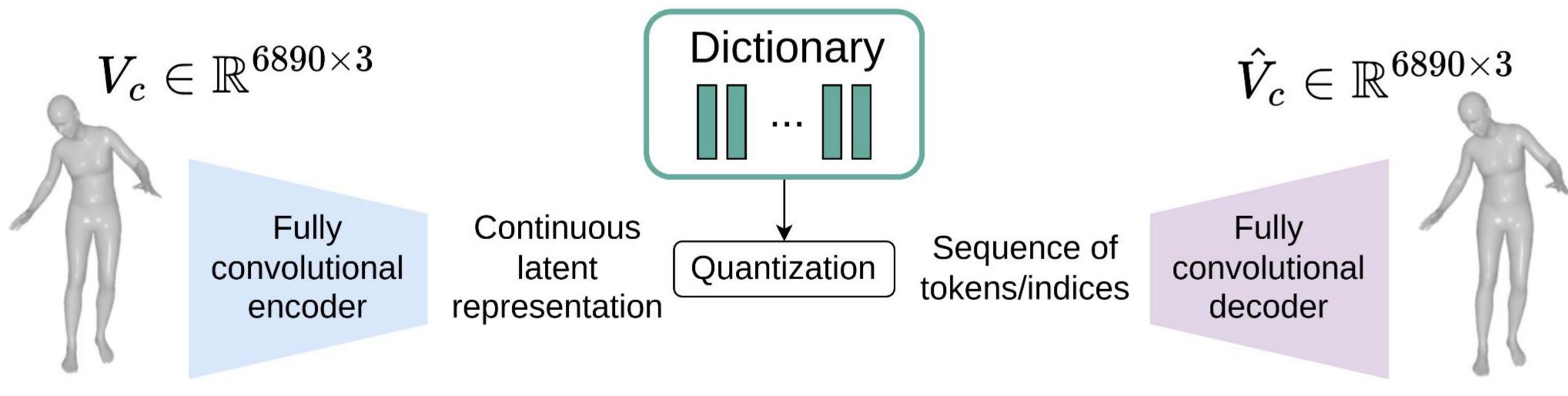


We propose to address the HMR problem as a **classification task**:

- We introduce the Mesh-VQ-VAE, an autoencoder that learns a discrete token representation of human meshes.
- We propose VQ-HPS, a Transformer-based model to solve HMR in the quantized latent space of the Mesh-VQ-VAE.

2. Mesh-VQ-VAE

Mesh-VQ-VAE is a fully convolutional mesh autoencoder [1] with a quantized latent space akin to VQ-VAE [2].

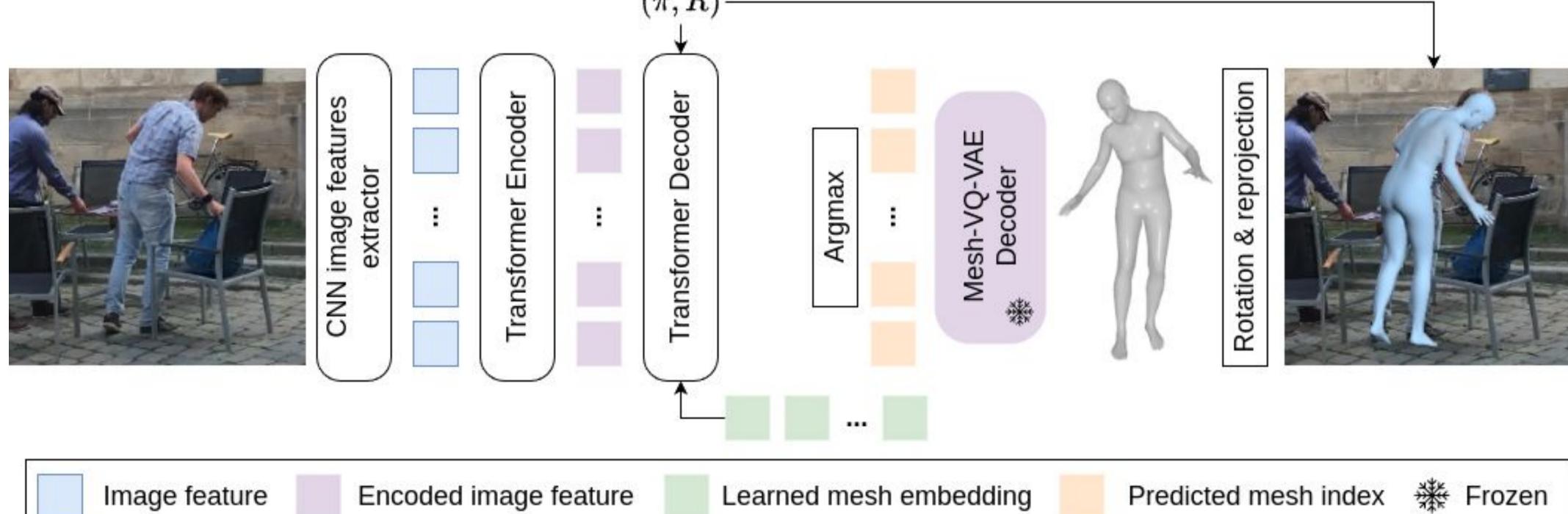


- A human mesh is represented with **54 human mesh tokens**.
- We minimize the reconstruction error on the AMASS dataset.
- Tokens are easy-to-process for Transformers.
- Quantization acts as a **prior**.

[1] Zhou, Yi, et al. "Fully convolutional mesh autoencoder using efficient spatially varying kernels." NeurIPS. 2020 [2] Van Den Oord, Aaron, and Oriol Vinyals. "Neural discrete representation learning." NeurIPS. 2017

Simon Leglaive¹ Xavier Alameda-Pineda²

VQ-HPS is a Transformer encoder-decoder that predicts human meshes as a **sequence of discrete tokens**.



- pre-trained decoder of the Mesh-VQ-VAE.
- pseudo-ground truth meshes.
- One single training loss function: the **cross-entropy**.

4. Quantitative results

We evaluate VQ-HPS on in-the-wild datasets without fine-tuning on the 3DPW training set.

	3DPW			EMDB		
Method	$\text{PVE}\downarrow$	$\mathbf{MPJPE}\downarrow$	PA-MPJPE \downarrow	$PVE \downarrow$	$\mathrm{MPJPE}\downarrow$	$\text{PA-MPJPE} \downarrow$
FastMETRO-L	121.6	109.0	65.7	119.2	108.1	72.7
ROMP	103.1	85.5	54.9	134.9	112.7	75.2
PARE	97.9	82.0	50.9	133.2	113.9	72.2
Virtual Marker	93.8	80.5	48.9	-	-	-
CLIFF	87.6	73.9	46.4	122.9	103.1	68.8
TokenHMR	88.1	76.2	49.3	124.4	102.4	67.5
VQ-HPS (ours)	84.8	71.1	45.2	112.9	99.9	65.2

VQ-HPS obtains state-of-the-art performance in HMR.

Antonio Agudo³ Francesc Moreno-Noguer³

3. VQ-HPS

Once predicted, the sequence of tokens is decoded with the

• We train VQ-HPS on a **mixture of datasets** annotated with

We compare VQ-HPS to other methods when training only on the **3DPW training set.**

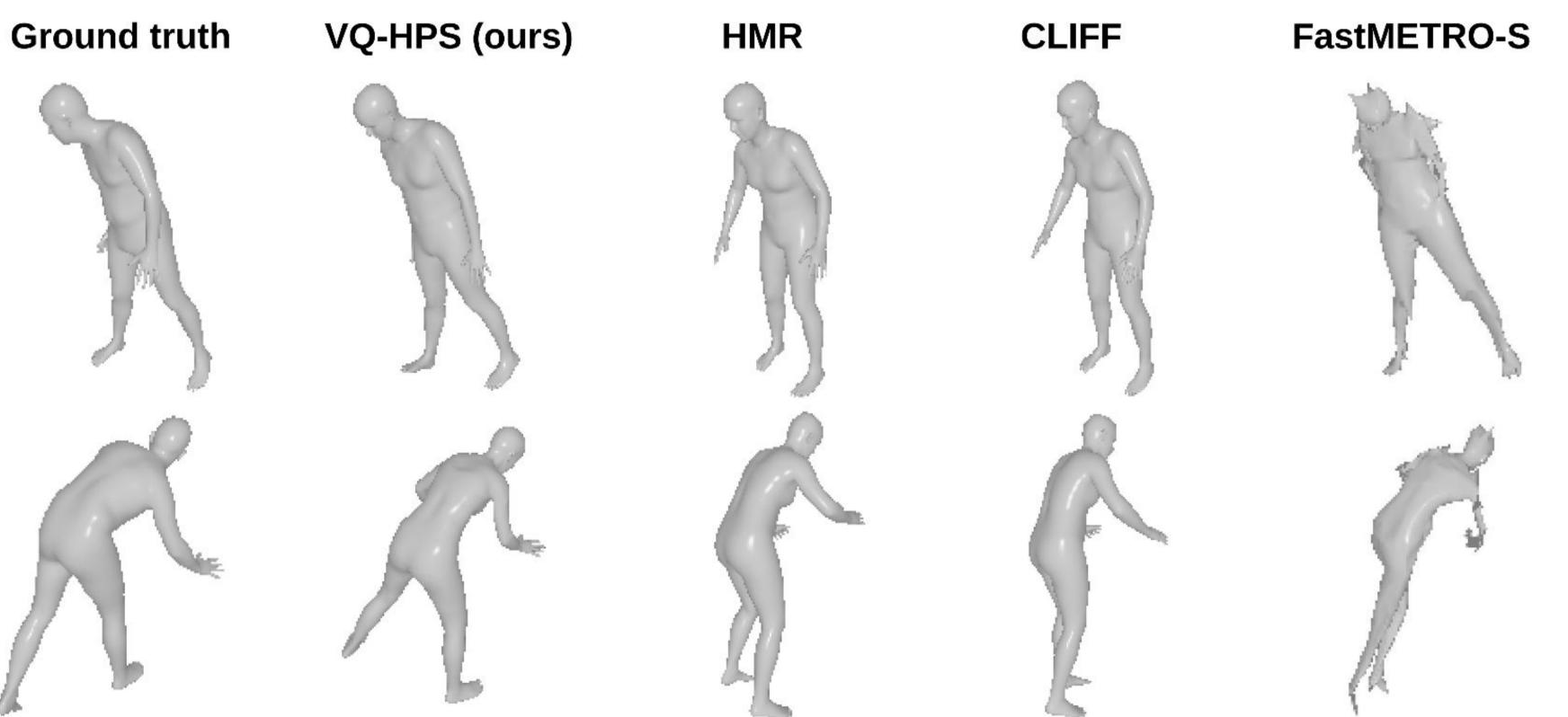
Quantization allows to obtain accurate and realistic results even with little training data.

Future work may include:

Following this work we proposed **MEGA**:

- Mesh-VQ-VAE.
- modeling.

5. Training with scarce data



6. Perspectives

 Developing quantized representation and similar approaches for hands, faces, or full-body reconstruction.

• Quantized representation can be linked to many different modalities, such as text or audio.

Uses the quantized human mesh representation of

• Single and multi-output HMR with masked generative

• SOTA results in **single and multi-output** HMR.

More info: https://g-fiche.github.io/research-pages/mega/