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ABSTRACT

Pose and motion priors are crucial for recovering realistic and accurate human motion from noisy
observations. Substantial progress has been made on pose and shape estimation from images, and
recent works showed impressive results using priors to refine frame-wise predictions. However, a lot
of motion priors only model transitions between consecutive poses and are used in time-consuming op-
timization procedures, which is problematic for many applications requiring real-time motion capture.
We introduce Motion-DVAE, a motion prior to capture the short-term dependencies of human motion.
As part of the dynamical variational autoencoder (DVAE) models family, Motion-DVAE combines the
generative capability of VAE models and the temporal modeling of recurrent architectures. Together
with Motion-DVAE, we introduce an unsupervised learned denoising method unifying regression- and
optimization-based approaches in a single framework for real-time 3D human pose estimation. Experi-
ments show that the proposed approach reaches competitive performance with state-of-the-art methods
while being much faster. See the project page at https://g-fiche.github.io/research-pages/motiondvae/

1 Introduction

Human Motion Capture has become a key technology with many applications, such as character animation for the
movie and video-game industries [1, 2, 3], performance optimization in sports [4, 5, 6], online shopping [7, 8],
or even preservation of cultural heritage [9, 10]. With the rise of AR/VR technologies and the development of the
metaverse [11, 12], we will need more accurate and realistic motion capture systems usable by everyone. Although giving
good results, traditional maker-based systems can hardly be used on a large scale because they need time-consuming
set-up and calibration. Recent advances have enabled motion capture from RGB images and videos [13, 14, 15]. This is
a very promising solution to generalize the use of motion capture because it only requires a camera. However, current
methods often produce unrealistic motions, especially in the case of occlusions or poor-quality images. The estimated
noisy motion capture data needs post-processing before using it for real applications like motion recognition [16, 17] or
scene understanding [18, 19].

There are numerous motion data post-processing methods, including temporal filtering [20], physical constraints [21],
or statistical human motion priors [22, 23]. More recently, deep learning-based methods gained popularity with the
pose priors like VPoser [24], or Pose-NDF [25], and motion priors like HuMoR [26] showing impressive results.
Generative models are particularly attractive because they can be used in numerous applications, such as motion infilling
or movement prediction. Despite impressive results, current pose and motion priors present several issues. First, many
generative motion priors learn transitions between consecutive poses. These models are attractive because they have
an excellent physical interpretation and generate realistic motions. However, they are subject to error accumulation
in reconstruction, and motion dynamics are usually observable along multiple frames. Moreover, many pose and
motion priors are used in optimization procedures, which are often prohibitively time-consuming. This is particularly
problematic for multimedia applications like virtual and augmented environments, which require real-time motion
capture of users [27]. Finally, very few methods model the noise in the observations.

To address these issues, we introduce Motion-DVAE, a generative motion prior using a dynamical variational autoencoder
(DVAE) [28] to capture the short-term dynamics of human motion. While being a generative model like all VAEs [29, 30],
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a DVAE introduces temporal relations among observed and latent variables using recurrent neural networks (RNNs).
RNNs can accurately represent the dynamics of human motion, which cannot be summarized as a sequence of
independent transitions.

Together with Motion-DVAE, we propose an unsupervised learned denoising method to refine 3D pose predictions
in real time by using the proposed model in regression- or optimization-based procedures. For the learning step, the
model parameters are estimated by maximizing the likelihood of the observations through an unsupervised optimization-
based procedure. Contrary to prior works, we refine the Motion-DVAE encoder weights instead of the motion latent
representation, enabling us to generalize to previously unseen data. Then, once learned on a database representative of
the conditions in the test phase, denoising can be performed as a regression task (regression mode). We can also use the
unsupervised optimization procedure for per-instance or per-dataset optimization (optimization mode).

In summary, our contributions are: (i) A generative motion prior, Motion-DVAE, representing short-term dependencies
of human motion. (ii) A flexible unsupervised learning framework for real-time human motion denoising in regression-
and/or optimization-based procedures. (iii) The proposed method is faster than state-of-the-art (SOTA) methods while
showing competitive performance on pose estimation and motion denoising.

2 Related work

One of the main applications of the introduced method is to perform 3D human motion estimation from monocular
videos. Therefore, we will review prior human pose and shape estimation works. We will then complete our study by
reviewing works using human motion priors.

2.1 Human mesh estimation

Recent works have made significant progress in 3D human pose and motion estimation [14, 31, 32, 13, 26]. While
earlier methods only focused on 3D joint locations [33, 34, 35, 36, 37], more and more works are model-based. This
means that instead of working directly on joint coordinates, they estimate the parameters of a parametric model of the
human body [38, 39, 24, 40, 41, 42]. Here we focus on model-based methods that estimate human pose and shape.

Optimization methods Optimization methods iteratively estimate the parameters of a body model given an image
or a video. Most of the time, the optimization objective ensures that the projection of 3D predictions is consistent
with a set of 2D cues. The first fully automatized method, SMPLify [31], fitted SMPL [39] to a set of 2D keypoints
obtained with an off-the-shelf model [43]. SMPLify uses a set of pose and shape priors to guide the optimization so it
converges toward realistic human bodies. Other works use different types of 2D information such as body silhouettes
or part segmentation [44, 45, 46]. However, most contributions use 2D keypoints and focus on improving pose and
shape priors [24, 47, 25], as well as the optimization process [48, 49, 46]. Various methods estimate motion by taking a
sequence of observations as input. In that case, the optimization takes into account temporal motion priors [20, 50, 26],
and some works jointly estimate moving camera position [51, 52]. Optimization methods usually give the most accurate
results, but the inference is typically much slower than regression methods.

Regression methods In most cases, regression methods use a neural network to regress the parameters of a human
body model, given an image as input. The canonical example of HMR [14] was the basis for several improvements [32,
13, 53, 54]. Recent advances took advantage of probabilistic modeling to propose multiple mesh predictions given
an image [47, 55]. Improvements also include the development of video-based approaches. VIBE [15] and other
methods [56, 57, 58] estimate motion directly from videos, while [59, 16] denoise predictions made by an off-the-shelf
3D prediction model with a single forward pass. The main problem for supervised regression methods is the lack of
RGB data with 3D annotations, which are very hard to obtain. While [17, 60, 55] use synthetic data, another approach
is to mix optimization and regression frameworks to learn in an unsupervised fashion. While HMR [14] uses a neural
network to replace the optimization step, SPIN [32] initializes SMPLify [31] with a neural network and takes the output
of the optimization as supervision.

In this work, we propose a unified framework that can be used in a regression- or optimization-based procedure. We
will train Motion-DVAE on noisy data with an unsupervised optimization-based method and use it in regression or
optimization modes on previously unseen data. This approach can be compared to the learning process of SPIN [32]
as optimization is used to train a regression method. However, the proposed method is different since optimization
is performed directly on the neural network’s weights instead of taking optimization results as pseudo-ground-truth
for network training. Other works finetuned neural networks for per-instance optimization [61, 62], however to our
knowledge, our approach is the first using unsupervised neural network training for per-dataset motion refinement.
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2.2 Pose and motion priors

Pose and motion priors are crucial for accurate and realistic motion capture from noisy observations. The first proposed
approaches relied on statistical models such as principal component analysis [22, 23] or Gaussian mixture models
learned on pose data [31], and physical constraints [21]. With the rise of deep learning, new approaches emerged,
using physics of motion [63, 64, 65], and adversarial training [14, 66, 67]. Recent pose [24] and motion [26, 16, 68,
69, 70, 71, 72, 3, 73] priors using VAEs [29, 30] showed very impressive results. In particular, ACTOR [16] learns
an action-conditioned VAE-transformer prior, and HuMoR [26] uses a conditional VAE (CVAE) to learn transitions
between consecutive poses. More recently, Pose-NDF [25] outperformed SOTA models [26, 24] for pose and motion
denoising by learning a manifold of human poses.

In this work, we use a VAE-based model for motion-prior learning in line with recent works. RNNs used in DVAE
enable us to model motion short-term dependencies efficiently.

3 Motion-DVAE

Notation. In all the following, we will use the notation N (µ, σ) to denote a Gaussian distribution with mean µ and a
diagonal covariance matrix with diagonal σ.

3.1 State representation

We want to represent the state of a moving person. A motion can be seen as a sequence of poses leading to translations
and rotations in space. Thus, we take r ∈ R3 the global translation, ϕ ∈ R3 the global orientation, and Θ ∈ R21∗3 the
pose in axis-angle representation. Those parameters can be fed to the SMPL model [39] to generate a human body
mesh, given body shape parameters β ∈ R10. It will output a vertex mesh V ∈ R6890×3 and a set of joints J ∈ R22×3.
In practice, we notice that giving the model parameters’ velocities helps the DVAE to reconstruct human motions.
Therefore, we also take ṙ, ϕ̇ and Θ̇ to represent the state. In the end, a moving person can be represented as a vector:

x = [r, ṙ, ϕ, ϕ̇,Θ, Θ̇] ∈ R46∗3. (1)

We can obtain the meshes and joints associated with x using the function:

V, J = Mβ(x), (2)

which corresponds to the SMPL forward pass computed from the appropriate entries of x and β.

3.2 Motion-DVAE model

We model human motion as a causal process: each state depends only on the past. We propose a DVAE [28] with a
sequence of latent vectors z1:T to implicitly capture the temporal dependencies of human motion.

Generative model The joint distribution of the introduced Motion-DVAE is defined as:

pθ(x1:T , z1:T |x0) = pθz (z1|x0)pθx(x1|z1, x0)×
T∏

t=2

pθz (zt|z1:t−1, x0)pθx(xt|z1:t, x0), (3)

where θx and θz represent the decoder and the prior network parameters and θ = θz ∪ θx. From the DVAE perspective,
x0 is fixed and can be considered a parameter. Indeed we model the dynamics of motion, and x0 is just the starting
point of it. The generative model of the DVAE is set as follows:

pθx(xt|z1:t, x0) = N (xt;µθx(z1:t, x0), Id), (4)

where µθx(z1:t, x0) is the output of the decoder network. We can interpret z1:t as a sequence of transitions allowing us
to go from x0 to xt. zt should then depend on x0 and previous transitions. Hence, we assume z1:0 = ∅ and define the
prior model as follows:

pθz (zt|z1:t−1, x0) = N (zt;µθz (z1:t−1, x0), σθz (z1:t−1, x0)). (5)

The generative model will be fixed during denoising learning. Implementation details are given in Appendix A.1.

One can notice that given the latent sequence z1:t, the DVAE does not use past states x1:t−1 to predict xt. Thus, contrary
to most motion models like [26], we do not need to alternate between sampling xt and zt to sample a motion sequence.
Furthermore, models that use previous predictions x1:t−1 for predicting xt are more likely to be subject to posterior
collapse [74, 75, 76].

3



Motion-DVAE

Inference model From the joint distribution Eq. (3), D-separation [28] yields the following approximate posterior
distribution:

qϕ(z1:T |x0:T ) = qϕ(z0|x0:T )
∏
t

qϕ(zt|z1:t−1, xt:T , x0). (6)

We define the inference model as follows:

qϕ(zt|z1:t−1, xt:T , x0) = N (zt;µϕ(z1:t−1, xt:T , x0), σϕ(z1:t−1, xt:T , x0)), (7)

where µϕ and σϕ are the output of the encoder network and z1:0 = ∅.

Implementation details of the inference model are given in Appendix A.2.

Loss functions The loss is computed using the evidence lower bound (ELBO) [28] derived from the inference and
generative models. We also add a regularization term at the output of the SMPL model to enforce the final human mesh
to be as close as possible to the original mesh, consisting of a squared reconstruction error on meshes and joints. More
information about loss functions is available in Appendix A.3, and learning settings are detailed in Appendix A.4.

4 Unsupervised learned denoising

In this section, we propose to exploit Motion-DVAE to refine the pose estimate in the context of monocular videos or to
recover motion from noisy 3D data. We introduce a robust noise model which can be tuned depending on the use case.

4.1 Problem definition and modeling

Suppose that we have 3D noisy observations in SMPL format:

yrawt = [rt, ϕt,Θt, βt]. (8)

Those parameters’ velocities can be obtained through finite differences in a deterministic way, leading to yt =
[rt, ṙt, ϕt, ϕ̇t,Θt, Θ̇t]. We take as observations the SMPL-H [77] body joints Jt ∈ R22×3 and a subset of mesh vertices
Vt ∈ R43×3 which can be seen as virtual motion capture markers [78]:

y3dt = [Jt, Vt] ∈ R65∗3. (9)

From the 3D noisy observations, our goal is to infer the initial state x0, the sequence of latent variables z1:T , and the
body shape β that correspond to the ground-truth clean motion.

Obtaining 3D observations from an RGB video. As stated in Eq. (8), the proposed unsupervised learned denoising
works on 3D global human motion noisy data. In order to obtain noisy motion capture data from RGB videos, we
propose SPIN-t, a procedure built on SPIN’s [32] frame-wise local pose estimations (in frame coordinates) to obtain
global motion (in world coordinates). Details about SPIN-t are available in Appendix F.

Joint distribution. We define the generative model of the noisy observations with the following joint distribution:

pθ(y0:T , v0:T , z1:T |β, x0) = p(v0)p(y0|x0, β, v0)×
T∏

t=1

pθ(zt|z1:t−1, x0)p(vt)pθ(yt|z1:t, β, vt, x0), (10)

with:

▷ p(y0|x0, β, v0) = N (y3d0 ;Mβ(x0), v0). This likelihood distribution is equivalent to considering that y0 is equal to
the output of the SMPL model applied on the initial state x0 plus a heteroscedastic Gaussian noise with zero mean and
variance coefficients v0. Note that the distribution is defined on the 3D predictions instead of SMPL parameters. This is
more convenient since we do not need to define a probabilistic distribution over SO3 [55].

▷ pθ(yt|z1:t, β, vt, x0) = N (y3dt ;Mβ(µθx(z1:t, x0)), vt). This likelihood distribution is very similar to the previous
one, except that we will use the Motion-DVAE decoder µθx to parameterize xt by x0 and a sequence of latent variables
z1:t.

▷ pθ(zt|z1:t−1, x0) = N (zt;µθz (z1:t−1, x0), σθz (z1:t−1, x0)). Here, we feed the initial state and past latent variables
to the Motion-DVAE prior network (µθz , σθz ) to obtain the current latent variable zt. We use the same prior distribution
for pθ(z1|x0) by assuming z1:0 = ∅.
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▷ p(vt) =
∏

j,d p(vt,j,d) where j ∈ {1 : 22} stands for the joint index, d ∈ {1 : 3} is the spatial dimension (x, y,
or z) and p(vt,j,d) = IG

(
vt,j,d;

λ
2 ,

λ
2

)
. This is a confidence model defined on 3D observations. IG stands for the

Inverse-Gamma distribution, the larger λ the higher confidence in observations. This variance model, along with the
above-defined likelihood model pθ(yt|z1:t, β, vt, x0) is equivalent to assuming that the 3D observations’ positional
error follows a Student-t distribution, which is more robust and adaptable than the Gaussian distribution [79].

Approximate Posterior We derive the approximate posterior of the latent variables given the noisy observations from
the previous joint distribution and D-separation [80, 81] (see Appendix B):

qϕ,γ,ω(x0, β, z1:T , v0:T |y0:T ) = q(β|y0:T )qω(x0|y0:T )qγ(v0|y0, x0)×
T∏

t=1

[
qγ(vt|z1:t, yt, x0)qϕ(zt|z1:t−1, yt:T , x0)

]
,

(11)
where:

▷ q(β|y0:T ) is modeled as a Dirac delta function centered on the observations’ average shape.

▷ qϕ(zt|z1:t−1, yt:T , x0) corresponds to the approximate posterior distribution of the DVAE described in Sec. 3.2.
Hence, we will finetune the encoder weights during denoising learning.

▷ qω(x0|y0:T ) and qγ(vt|z1:t, yt, x0) are respectively Gaussian and Inverse Gamma distributions and will be imple-
mented by two new neural networks (initial state and noise predictors) learned during the denoising learning step.

This inference model will be used to estimate the latent variables from the noisy observations, particularly the initial
state x0 and the latent motion z1:T , which encode the ground truth motion x1:T .

4.2 Unsupervised denoising learning

The aim of unsupervised denoising learning is to learn the parameters of the inference model defined in Eq. (11). The
objective is to push the approximate posterior qϕ,γ,ω(x0, β, z1:T , v0:T |y0:T ) towards the intractable exact posterior
distribution pθ(x0, β, z1:T , v0:T |y0:T ). We can show that this is equivalent to maximizing an ELBO [82], yielding the
following objective function (see Appendix C):

L(ϕ, γ, ω) = Lrec + LDVAE
KL + Lnoise

KL , (12)

where

Lrec = −1

2
Eqϕ,γ,ω

[∑
j,d

1

v0,j,d
(y0,j,d −Mβ(x0)j,d)

2 +
∑
t,j,d

1

vt,j,d
(yt,j,d −Mβ(µθx(x0, z1:t))j,d)

2

]
(13)

is a negative MSE weighted by the inverse of the estimated noise variance for each observation and

LDVAE
KL = −

T∑
t=1

Eqωqϕ

[
DKL

(
qϕ(zt|z1:t−1, yt:T , x0) ∥ pθ(zt|x0, z1:t−1)

)]
; (14)

Lnoise
KL = −

T∑
t=1

Eqωqϕ

[
DKL

(
qγ(vt|z1:t, yt, x0) ∥ p(vt)

)]
(15)

push the approximate posteriors towards the priors.

To learn the inference model, we will jointly optimize ϕ, γ, and ω, which are the weights of the Motion-DVAE encoder
initially learned on AMASS [83], noise predictor, and initial state predictor networks. No other parameter will be
optimized, so there will not be any mandatory optimization process when performing denoising on new data. This
enables dramatic speed-up of denoising new data. Note that Motion-DVAE prior and decoder networks are fixed during
the denoising training process. This enables keeping the motion prior unchanged and focusing on filling the gap between
noisy observations and clean motion capture data. Implementation details are given in Appendix E.

4.3 Denoising new data

For denoising new data, the final prediction is the posterior mean estimate of x3d0:T . First, we need to predict the initial
state:

x̂3d0 = Eqω(x0|y0:T )[Mβ(x0)] ≃ Mβ(µω(y0:T )). (16)
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Figure 1: Evolution of the accuracy in V2V versus speed.

where µω is the mean vector of qω(x0|y0:T ). To infer x̂0, we have to feed the initial state predictor with observations
and take the mean of the output distribution. For predicting x1:T we will use:

x̂1:T = Eqϕ,γ,ω

[
Epθ(x1:T |x0,β,z1:T ,v0:T ,y0:T )[x1:T ]

]
. (17)

This leads to the following estimate:

x̂3dt,j,d = Eqϕ,γ,ω

[
vt,j,dMβ(µθx(x0, z1:t−1)j,d) + y3dt,j,d

vt,j,d + 1

]
. (18)

More detailed calculations are available in Appendix D. We assume that Mβ(xt) follows a Gaussian distribution with
mean M(µθx(x0, z1:t−1)j,d) and unit variance. This is an approximation because xt being a Gaussian distribution does
not mean that Mβ(xt) is also Gaussian and the variance of xt and Mβ(xt) are not equal. However, this approximation
is used in state-of-the-art methods [25] and works well in practice.

We can intuitively interpret the final clean motion estimate in Eq. (18): if the confidence in observations is very high,
vt,j,d will be a small value, and the final predictions will be very close to y3dt,j,d. Conversely, if vt,j,d is large, the final
prediction will rely more on the Motion-DVAE output. The process to estimate x̂1:T compromises observations and the
Motion-DVAE output weighted by the estimated variance. It needs recursive Monte Carlo sampling on x0 and z1:T to
calculate the expectation of the noise for the initial state and the motion. Despite this necessary sampling, denoising
can be made in real time because each sample only consists of a forward pass in a neural network, which is almost
instantaneous in our case.

5 Experimental results

This section evaluates the proposed unsupervised learned denoising framework with Motion-DVAE for human motion
data denoising. Experiments on RGB videos and an ablation study are available as supplementary material (see
Appendix H). We evaluate the proposed method for each experiment and compare it to the state-of-the-art in terms of
accuracy and speed. All tests have been run on a single Nvidia GeForce GTX 1070.

For experiments on human motion data denoising we use AMASS [83]. The AMASS dataset [83] is a large database of
human motion that unifies several motion capture databases by representing them in SMPL format. It contains more
than 300 subjects and 10k motions, covering various shapes and poses. We sub-sample AMASS to 30Hz and follow the
recommended training, validation, and testing splits.

5.1 Denoising noisy motion capture data

First, we evaluate the unsupervised learned denoising on noisy motion capture data. To generate noisy mocap data,
we use the same procedure as Pose-NDF [25]: we add a Gaussian noise to the rotation of each joint in the axis-angle
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Table 1: Motion denoising on noisy AMASS: We compare our method (bottom part) and SOTA (middle part)
performance for 3 different noise values.

Speed ↓ V2V ↓ Acceleration

Ground truth - - 6.32
Observations - 8.68 12.89 16.93 137.44 202.56 264.28
HuMoR [26] 5.60 5.61 6.31 7.97 4.36 5.55 8.76

Pose-NDF [25] 0.17 5.89 6.90 7.89 9.64 10.03 10.84
Regression (ours) 0.001 6.25 7.69 9.36 7.64 7.99 8.57

Optimization (ours) 0.06 5.02 6.74 8.72 8.09 9.98 9.49

representation. We test our method on sequences of 2 seconds. We set the noise standard deviation to 0.1, 0.15, and 0.2,
corresponding to initial per-vertex errors of 8.68, 12.89, and 16.93 cm. The observations are the noisy vertices (virtual
Mocap markers) and joints, and we initialize the denoising with the corresponding noisy SMPL parameters.

Starting from the proposed Motion-DVAE trained on AMASS, we use the unsupervised learning process described in
Sec. 4.2 on the noisy AMASS training data. We then use our model in both regression and optimization modes. The
inference model is fixed for regression mode, and predictions are made through a single forward pass in Motion-DVAE.
In optimization mode, the inference model is optimized on test samples in an unsupervised fashion for a fixed number
of iterations using Sec. 4.2. Note that all optimization methods, such as HuMoR [26] and Pose-NDF [25], perform
optimization on the test set. The difference between the proposed approach and those methods is that we can use
Motion-DVAE in regression mode and that optimization variables are neural networks parameter, enabling us to
optimize the inference model for the whole test set at once independently of the number of sequences.

Instead of using Eq. (18) for denoising, we use the initial state predictor and Motion-DVAE output as the prediction.
This saves us from learning to predict the noise on every 6890 vertices, which would be complicated in practice. Then,
using the proposed Student-t noise model for training and optimization would not make as much sense since we do
not use it for final predictions. Thus, we use very high values for noise parameter λ, which is equivalent to choosing
a Gaussian prior distribution for the noise. Adding a Gaussian noise to the SMPL pose parameter does not give a
Gaussian noise in 3D observations; however, this approximation was also made in the SOTA approach [25] and works
well in practice. We compare our results in regression and optimization modes with public implementations of SOTA
methods [25, 26] in Tab. 1, regarding speed (in s/frame), per-vertex-error (V2V in cm), and joints acceleration (in
m/s2). Joints acceleration measures the motion plausibility, the best joint acceleration is the closest to the ground truth
value (6.32).

The proposed method is much faster than the SOTA methods. In the regression mode, the proposed method is 170
times faster than Pose-NDF and 5000 times faster than HuMoR. Regarding per-vertex error, the proposed approach in
optimization mode outperforms the SOTA methods for an introduced noise of 8.68 cm. Our performance is similar to
the SOTA models for an added noise of 12.89 cm in observations. However, the introduced method is less efficient
than others for an added noise of 16.93 cm. This performance degradation for our approach when the added noise is
large is unsurprising. Indeed, we never optimize the inputs of Motion-DVAE, which are always noisy observations.
When the introduced noise is significant, correcting the error through a single forward pass becomes hard. In terms
of joint acceleration, HuMoR produces the most realistic motions. However, it sometimes produces over-smoothed
predictions, and the mean joint acceleration highly depends on the noise value. Pose-NDF produces unnatural motions
according to the joint acceleration criteria, which is unsurprising since its only temporal model is a smoothing term
over time. Our method produces reasonably smooth motions and is not very sensitive to the noise value. One can
notice that optimization decreases the per-vertex error but also increases joint acceleration. This observation is expected:
when Motion-DVAE is trained on an extensive training set and used in regression mode, it tends to produce smooth
motions. In the optimization mode, the proposed model is adapted to specific noisy motion samples, which improves
the prediction in terms of per-vertex error at the expense of smoothness.

Qualitative results are shown on Fig. 2. For Motion-DVAE, optimization was performed on the whole noisy AMASS
test set, not only on the visualized sequence. Qualitative results on videos are available on the project website.

5.2 Methods accuracy versus speed

The previous experiment fixed the number of iterations for the proposed and state-of-the-art optimization-based methods.
The proposed inference model was optimized for 50 iterations. We used the implementation default number of iterations
for [26] and [25]. We are now interested in investigating the methods’ accuracy as a function of the speed. For this
purpose, we vary the number of iterations. For the proposed method, we use the regression mode (0 optimization
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Groundtruth Observations Regression (ours)

Optimisation  (ours) HuMoR Pose-NDF

Figure 2: Qualitative results for motion denoising.

iterations) as well as the optimization mode for a number of steps between 20 and 250. The methodology for reducing
[26] and [25] optimization processes as well as experiments on the output plausibility as a function of speed are exposed
in the supplementary material (see Appendix H).

Experiments were performed on a randomly selected subset of 54 sequences from the test set of noisy AMASS, with
a noise standard deviation of 0.15. We arbitrarily define acceptability thresholds for each metric, these could differ
depending on the use case. For the speed, we consider that a method should not be more than 10 times slower that the
frame rate. Beyond that, we consider that the method becomes difficult to use on a large scale. For accuracy, we expect
the method to decrease the error of the noisy observations by at least 33 percent.

Results are shown in Fig. 1. HuMoR obtains good accuracy performance, but its slowness makes it unusable in practice.
Pose-NDF with 5 steps satisfies all the criteria, however Motion-DVAE is the best choice to obtain good accuracy in a
reasonable amount of time.

6 Conclusion

We introduced Motion-DVAE, a human motion prior based on the dynamical variational autoencoder framework for
modeling short-term dependencies of human movement. Together with Motion-DVAE, we proposed an unsupervised
learned denoising method allowing for robust noise modeling. This procedure can be used for motion denoising in
regression- or optimization-based frameworks and adapts to new data in real time. Our method is more than 100 times
faster than SOTA approaches for motion denoising while showing similar accuracy and plausibility. It is state-of-the-art
for local motion estimation from videos, while being about 50 times faster than SOTA optimization methods.

Future work includes modeling environmental interactions, such as ground and object contact. This would probably
help improve the global predictions, which is one of the weaknesses of Motion-DVAE. Another potential development
would be improving noise modeling, for example, by learning visibility.
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Supplementary material

A Motion-DVAE training

A.1 Implementation of the generative model

We recall the generative model of Motion-DVAE:

pθ(x1:T , z1:T |x0) = pθ(z1|x0)pθ(x1|z1, x0)
T∏

t=2

pθ(zt|z1:t−1, x0)pθ(xt|z1:t, x0), (1)

We implement pθ(xt|z1:t, x0) = N (xt;µθx(z1:t, x0), Id) with:

• hx0 = dini(x0),

• hxt = dhx(hxt−1, zt),

• µθx(h
x
t ) = dx(h

x
t ).

For pθ(zt|z1:t−1, x0) = N (zt;µθz (z1:t−1, x0), σθz (z1:t−1, x0)), we take:

• hz0 = dini(x0)

• hzt = dhz (hzt−1, zt)

• [µθz (h
z
t ), σθz (h

z
t )] = dz(h

z
t )

dhx and dhz are recurrent neural networks and are both implemented with the same LSTM. dini, dx, and dz are MLPs
with 2 hidden layers using group normalization with 16 groups and ReLU activations. The latent dimension is 48, while
the LSTM hidden state dimension is 1024.

A.2 Implementation of the approximate posterior

The inference model is:
qϕ(z1:T |x0:T ) = qϕ(z0|x0:T )

∏
t

qϕ(zt|z1:t−1, xt:T , x0). (2)

qϕ(zt|z1:t−1, xt:T , x0) = N (zt;µϕ(z1:t−1, xt:T , x0), σϕ(z1:t−1, xt:T , x0)) is implemented by:

• hglobt = [hlatt−1, h
data
t ],

• hlat0 = eini(x0),

• hlatt = elath (hlatt−1, zt),

• hdata0 = 0,

• hdatat = edatah (hdatat+1 , xt),

• [µϕ(h
glob
t ), σϕ(h

glob
t )] = eglob(h

glob
t ).

elath and edatah are LSTM neural networks, while eini and eglob are MLPs. Implementations of LSTM and MLP are
similar to the generative model.

A.3 Loss function

From Eq. (3) and Eq. (6), following [84], the ELBO of Motion-DVAE is:

L(θ, ϕ;x0:T ) =
T∑

t=1

Eqϕ [log pθ(xt|z1:t, x0)]−
T∑

t=1

Eqϕ [DKL(qϕ(zt|z1:t−1, xt:T , x0)||pθ(zt|z1:t−1, x0))]. (3)
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We define the loss function of Motion-DVAE:
Ltrain(θ, ϕ;x0:T ) = Lrec(θ, ϕ;x0:T ) + LKL(θ, ϕ;x0:T ) + Lreg(θ, ϕ;x0:T ). (4)

The first term can be developed as:

Lrec(θ, ϕ;x0:T ) = −
T∑

t=1

Eqϕ [log pθ(xt|x0, z1:t)]

= −
T∑

t=1

Eqϕ [logN (xt;µθx(z1:t, x0), Id)]

=

T∑
t=1

Eqϕ

[
∥ µθx(z1:t, x0)− xt ∥22

]
.

This is a reconstruction term between the input and the output of Motion-DVAE.

The second term is a Kullback-Leibler divergence pushing the posterior distribution towards the prior:

LKL(θ, ϕ;x0:T ) =

T∑
t=1

Eqϕ [DKL(qϕ(zt|z1:t−1, xt:T , x0)||pθ(zt|z1:t−1, x0))].

We also add a regularization term using the SMPL model to enforce the final human mesh to be as close as possible to
the original mesh. It consists of a squared reconstruction error on meshes and joints:

Lreg(θ, ϕ;x0:T ) =

T∑
t=1

Eqϕ

[
∥ Mβ(µθx(z1:t, x0))−Mβ(xt) ∥22

]
.

A.4 Learning settings

We train Motion-DVAE with sequences of 30 frames from the AMASS [85] dataset, previously downsampled to 30Hz.
Then, learning sequences last 1 second. We choose this duration because we argue that even if human motion can last
more than 1 second, direct dependencies between poses rarely exceeds 1 second. To ease learning, following [86], we
align the first frame of each sequence in the canonical coordinate frame, meaning that translation r0 and the first two
components of root-orient Φ0 are 0. This enables focusing on learning spatial-temporal dependencies independently
from the starting point of the motion, which makes the motion prior more general.

We use batches of 64 sequences and train Motion-DVAE for 200 epochs. Similar to HuMoR [86], we use Adamax [87]
with the same settings and learning rate decays. We also use KL-annealing [88] during the first 50 epochs. However,
since our model does not use past predictions for current state prediction, we do not need to perform scheduled sampling.

B Unsupervised learned denoising posterior distribution

Let’s recall the joint distribution in the context of motion denoising:

pθ(y0:T , v0:T , z1:T |β, x0) = p(v0)p(y0|x0, β, v0)
T∏

t=1

pθ(zt|z1:t−1, x0)p(vt)pθ(yt|z1:t, β, vt, x0). (5)

We want to express the posterior distribution pθ(x0, β, z1:T , v0:T |y0:T ):
pθ(x0, β, z1:T , v0:T |y0:T ) = p(β|v0:T , z1:T , x0, y0:T )pθ(v0:T , z1:T , x0|y0:T )

= p(β|v0:T , z1:T , x0, y0:T )p(v0:T |z1:T , x0, y0:T )pθ(z1:T |x0, y0:T )p(x0|y0:T )

= p(β|v0:T , z1:T , x0, y0:T )
T∏

t=1

[
p(vt|z1:t, yt, x0)pθ(zt|z1:t−1, yt:T , x0)

]
p(v0|y0, x0)p(x0|y0:T )

≃ p(β|y0:T )
T∏

t=1

[
p(vt|z1:t, yt, x0)pθ(zt|z1:t−1, yt:T , x0)

]
p(v0|y0, x0)p(x0|y0:T ).
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As can be seen in the above calculations, we approximate the posterior of β. We choose to ignore the noise and the
latent motion to simplify the model. In practice, β is computed as the average of the observed sequence of body shapes.

As a reminder, we define the following approximate posterior:

q(x0, β, z1:T , v0:T |y0:T ) = q(β|y0:T )
T∏

t=1

[
qγ(vt|z1:t, yt, x0)qϕ(zt|z1:t−1, yt:T , x0)

]
qγ(v0|y0, x0)qω(x0|y0:T ). (6)

C ELBO derivation and loss functions

For finetuning Motion-DVAE, we aim to minimize the Kullback-Leibler divergence:

min
ϕ,γ,ω

DKL(qϕ,γ,ω(x0, β, z1:T , v0:T |y0:T )||pθ(x0, β, z1:T , v0:T |y0:T )). (7)

We will do it by maximizing the ELBO:

L(ϕ, γ, ω) = Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T ) [log pθ(y0:T , v0:T , z1:T , x0, β)− log qϕ,γ,ω(x0, β, z1:T , v0:T |y0:T )] . (8)

C.1 ELBO decomposition

One can notice that the first term of the ELBO involves the joint distribution defined in Eq. (5). Taking the logarithm
and expectation of this joint distribution, we obtain:

Eqϕ,γ,ω
[log p(v0) + log p(y0|x0, β, v0)] +

T∑
t=1

Eqϕ,γ,ω
[log pθ(zt|x0, z1:t−1) + log p(vt) + log pθ(yt|x0, z1:t, β, vt)] .

Similarly, the second term involves:

qϕ,γ,ω(x0, β, z1:T , v0:T |y0:T ) = q(β|y0:T )
T∏

t=1

[
qγ(vt|z1:t, yt, x0)qϕ(zt|z1:t−1, yt:T , x0)

]
qγ(v0|y0, x0)qω(x0|y0:T ),

which becomes after taking the logarithm and expectation:

Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T ) [log q(β|y0:T ) + log qγ(v0|y0, x0) + log qω(y0:T )]

+

T∑
t=1

Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T ) [log qγ(vt|z1:t, yt, x0) + log qϕ(zt|z1:t−1, yt:T , x0)] .

The decomposed ELBO is then:

L(ϕ, γ, ω) = Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T )

[
log p(y0|x0, β, v0) +

T∑
t=1

log pθ(yt|z1:t, β, vt, x0)

]
+ Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T ) [− log qω(x0|y0:T )]

+ Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T )

[
T∑

t=1

log pθ(zt|z1:t−1, x0)−
T∑

t=1

log qϕ(zt|z1:t−1, yt:T , x0)

]

+ Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T )

[
T∑

t=0

log p(vt)−
T∑

t=1

log qγ(vt|z1:t, yt, x0)

]
+ Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T ) [− log q(β|y0:T )] ,
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which can be rewritten as:

L(ϕ, γ, ω) = Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T )

[
log p(y0|x0, β, v0) +

T∑
t=1

log pθ(yt|z1:t, β, vt, x0)

]
− Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T ) [log qω(x0|y0:T )]

− Eqϕ,γ,ω(x0,β,v0:T |z1:T ,y0:T )

[
DKL(

T∏
t=1

qϕ(zt|z1:t−1, yt:T , x0) ∥
T∏

t=1

pθ(zt|z1:t−1, x0))

]

− Eqϕ,γ,ω(x0,β,z1:T |v0:T ,y0:T )

[
DKL(

T∏
t=0

qγ(vt|z1:t, yt, x0) ∥
T∏

t=0

p(vt))

]
− Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T ) [log q(β|y0:T )] .

C.2 ELBO terms calculation

C.2.1 Data commitment term

The first term is a data commitment term. We have:

Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T )

[
log p(y0|x0, β, v0) +

T∑
t=1

log pθ(yt|x0, z1:t, β, vt)

]

= Eqϕ,γ,ω

[
logN (y0;Mβ(x0), v0) +

T∑
t=1

logN (yt;Mβ(µθx(x0, z1:t)), vt))

]

=
1

2
Eqϕ,γ,ω

[∑
j,d

1

v0,j,d
(y0,j,d −Mβ(x0)j,d)

2 +
∑
t,j,d

1

vt,j,d
(yt,j,d −Mβ(µθx(x0, z1:t))j,d)

2

]

As expected, those are Mean Squared Errors weighted by the inverse of the variance.

C.2.2 Initial state predictor term

The second term is linked to the initial state predictor:

Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T ) [log qω(x0|y0:T )] = Eqω(x0|y0:T ) [log qω(x0|y0:T )] .

This term corresponds to the negative entropy of qω(x0|y0:T ). We chose not to use it during learning because it would
increase the initial state predicted variance, which is not a desired behavior.

C.2.3 Motion prior term

The third term of the ELBO uses Motion-DVAE to implement a motion prior:

Eqϕ,γ,ω(x0,β,v0:T |z1:T ,y0:T )

[
DKL

(
T∏

t=1

qϕ(zt|z1:t−1, yt:T , x0) ∥
T∏

t=1

pθ(zt|z1:t−1, x0)

)]

=

T∑
t=1

Eqωqϕ

[
DKL

(
qϕ(zt|z1:t−1, yt:T , x0)||pθ(zt|x0, z1:t−1)

)]
=

T∑
t=1

Eqωqϕ

[
DKL

(
N (zt;µϕ(z1:t−1, xt:T , x0), σϕ(z1:t−1, xt:T , x0)) ∥ N (zt;µθz (z1:t−1, x0), σθz (z1:t−1, x0))

)]
= −1

2

T∑
t=1

Eqωqϕ

[
log

σµθz

σϕ
− 1 +

σϕ
σµθz

+
(µµθz

− µϕ)
2

σµθz

]
.
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C.2.4 Noise prior term

The fourth term of the ELBO is a noise prior term:

Eqϕ,γ,ω(x0,β,z1:T |v0:T ,y0:T )

[
DKL(

T∏
t=0

qγ(vt|z1:t, yt, x0) ∥
T∏

t=0

p(vt)

]

=

T∑
t=1

Eqωqϕ [DKL(qγ(vt|z1:t, yt, x0) ∥ p(vt)]

=
∑
t,j,d

Eqωqϕ

[
DKL

(
IG (vt,j,d, αγ(z1:t, yt,j,d, x0), βγ(z1:t, yt,j,d, x0)) ∥ IG

(
vt,j,d,

λ

2
,
λ

2

))]

=
∑
t,j,d

Eqωqϕ

[(
αγ − λ

2

)
ψ (αγ)− log Γ (αγ) + log Γ

(
λ

2

)
+
λ

2

(
log βγ − log

λ

2

)
+ αγ

λ
2 − βγ

βγ

]
,

where Γ and ψ are the Gamma and Digamma functions.

C.2.5 Body shape term

The last term is about body shape:

Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T ) [log q(β|y0:T )] = E
[
δ(β − β̄SPIN (y0:T ))

]
Since that term does not depend on any learned parameter, we ignore it during training.

D Final predictions from observations

D.1 Initial state

We start by predicting the initial state:

x̂3d0 = Eqω(x0|y0:T )[Mβ(x0)] ≃ Mβ(µω(y0:T )), (9)

where µω is the mean vector of qω(x0|y0:T ).

D.2 Motion prediction

Then we need to compute x̂1:T = Epθ(x1:T |y0:T )[x1:T ] where

p(x1:T |y0:T ) =
∫
pθ(x1:T , x0, β, z1:T , v0:T |y0:T ) dx0

dβdz1:tdv0:T

=

∫
pθ(x1:T |x0, β, z1:T , v0:T , y0:T )pθ(x0, β, z1:T , v0:T |y0:T ) dx0dβdz1:tdv0:T

= Epθ(x0,β,z1:T ,v0:T |y0:T )

[
pθ(x1:T |x0, β, z1:T , v0:T , y0:T )

]
.

Approximating the posterior pθ(x0, β, z1:T , v0:T |y0:T ) with qϕ,γ,ω we obtain:

x̂1:T = Eqϕ,γ,ω

[
Epθ(x1:T |x0,β,z1:T ,v0:T ,y0:T )[x1:T ]

]
. (10)

We need to calculate pθ(x1:T |x0, β, z1:T , v0:T , y0:T ):

log pθ(x1:T |x0, β, z1:T , v0:T , y0:T )
c
= log pθ(x1:T , x0, β, z1:T , v0:T , y0:T )
c
=
∑
t

log p(yt|xt, vt)pθ(xt|z1:T , x0)

=
∑
t

logN (yt;xt,diag(vt))N (xt;µθx , σθx),
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where c
= denotes equality up to an additive constant that does not depend on x1:T . We can further develop the last line

and identify:

log pθ(x1:T |x0, β, z1:T , v0:T , y0:T ) =
∑
t,j,d

logN
(
xt,j,d;

vt,j,d(µθx)j,d + (σθx)j,dyt,j,d
vt,j,d + (σθx)j,d

,
vt,j,d(σθx)j,d
vt,j,d + (σθx)j,d

)
.

This finally leads to:

x̂3dt,j,d = Eqϕ,γ,ω

[
vt,j,dMβ(µθx(x0, z1:t−1)j,d) + y3dt,j,d

vt,j,d + 1

]
. (11)

E Unsupervised denoising learning

E.1 Neural networks implementation

During the unsupervised denoising training, we introduce 2 neural networks: an initial state predictor and a noise
predictor. Those 2 models were not necessary for training Motion-DVAE on clean motion capture data since x0 was
known and there was no noise in the observations.

As described in the main paper, the initial state predictor implements qω(x0|y0:T ) = N (x0;µω(y0:T ), σω(y0:T )). It is
implemented by:

• h0 = 0

• ht = rh(ht+1, yt)

• x̂0 = eini(hT )

rh is an anticausal LSTM neural network. We want it to take the observations y0:T backward in time because x0 should
depend more on y0 than on yT . eini is an MLP.

For the noise predictor, we implement qγ(vt|z1:t, yt, x0) =
∏

j,d IG (vt,j,d;αγ(z1:t, yt, x0), βγ(z1:t, yt, x0)) as fol-
lows:

• hz0 = dini(x0)

• hzt = dhz (hzt−1, zt)

• [αγ , βγ ] = eb(ht, yt)

dini and dhz are the MLP and the LSTM neural networks previously defined for Motion-DVAE. eb is an MLP only
used by the noise predictor.

E.2 Learning settings

Unsupervised denoising training for regression mode is performed on training data for 500 epochs, with early stopping
when the validation loss does not improve for 10 epochs. Note that for noisy AMASS [85] data, the training converges
in about 50 epochs only, probably due to a large amount of training data. In optimization mode, we fix the number of
iterations (200 iterations on i3DB [89], and 50 for AMASS).

During unsupervised denoising learning, the decoder and prior networks are fixed, preserving the motion prior. We
optimize the weights of the encoder, initial state predictor, and noise predictor networks. As for training the original
Motion-DVAE, we use KL-annealing [88].

F SPIN-t

SPIN-t is a procedure built on SPIN’s [90] frame-wise local pose estimations (in frame coordinates) to obtain global
motion (in world coordinates). SPIN provides SMPL pose and shape parameters Θ and β, as well as orientation ϕ
relative to the camera. To obtain motion in global coordinates, we need the global translation r. For smooth and realistic
3D trajectories, we decide to optimize both global translation and rotation. We define v as the output of the SMPL
model forward passes with optimization variables r and ϕ and SPIN [90] predictions β and Θ. During the optimization,
v it only depends on the global translation and rotation. We use L-BFGS [91] to solve the following optimization
problem:

min
r,ϕ

λdata ξdata(r, ϕ) + λsmooth ξsmooth(r, ϕ), (12)
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where ξdata(r, ϕ) =
∑
t

∑
j

σt,jρ(Π(vt,j) − yt,j), with t the temporal index, j the observed joint, yt,j and σt,j the

Openpose [92] 2D detection and its associated confidence, ρ the robust Geman McClure function [93], and Π the pinhole
projection; and ξsmooth = ||v1:T − v0:T−1||22. ξdata ensures that the projection of the predicted 3D joints corresponds
to the 2D detections, while ξsmooth smooths the motion over time. λdata and λsmooth are two hyperparameters.

G Ablation of SOTA optimization processes

The optimization process of HuMoR can be divided into 2 parts. A first part called VPoser-t minimizes the projection
error of 3D predictions relative to 2D keypoints [92], with a pose prior [94] and regularization terms. The second part
of optimization uses a CVAE motion prior to predict more plausible motions. We first decrease the number of iterations
of the last part, which is the most time-consuming and the less important for the final results. We then decreased the
number of iterations for VPoser-t, leading to significant degradation in performance.

Pose-NDF uses 5 steps of 50 iterations. At each iteration, the observation reconstruction weight becomes less and less
important compared to the pose prior and smoothing term. Then, changing the number of iterations per step would
change the balance of the loss functions, and we thus reduce the number of steps instead.

H Additional experiments

H.1 Plausibility versus speed

Figure 1: Evolution of the performance versus speed. Vertex-to-vertex (V2V) error is an accuracy metric, while joints
acceleration measures plausibility.

This experiment is similar to the "Accuracy versus Speed" experiment in the main paper. We consider that joint
acceleration should be between half and double of the ground-truth joint acceleration. Results are shown in Fig. 1.

HuMoR obtains satisfying plausibility performance, but it is very slow. Pose-NDF produces motions that are not
smooth enough. Considering plausibility and speed Motion-DVAE is clearly the best choice. We observe that the
more optimization iterations are performed with the proposed method, the better accuracy, but also the less smooth
predictions. This result is not surprising since optimizing the model for specific samples leads to a loss of generalization.

H.2 Experiments on i3DB

We provide supplementary experiments on i3DB [89]. The i3DB dataset [89] contains in-the-wild videos with medium
to heavy occlusions due to person-environment interaction. It provides global 3D annotations on joint coordinates that
we use for computing evaluation metrics. We initialize our method using an off-the-shelf 2D pose estimation [92] and
SPIN [90], a method providing frame-wise SMPL pose estimates.
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Figure 2: Qualitative results for motion estimation from videos.

H.2.1 Evaluation on RGB videos

We evaluate the proposed method on i3DB [89]. Following [86], we only use six scenes with accurate annotations
(Scenes 05, 07, 10, 11, 13, and 14). Due to this dataset’s low number of videos, we evaluate our approach in a
cross-validation setting, with each fold: 4 videos for training, 1 for validation, and 1 for testing. As in the previous
experiment, the method is evaluated in the two regression and optimization modes.

As for the motion denoising experiment, we use very high values for noise parameter λ for learning the denoising
process on the noisy training set. However, we use a robust learned noise model in the optimization mode. This gives a
Student-t prior distribution for the noise on the 3D observations. Fitting a robust noise model on noisy observation
sequences allows us to adapt to the observed noise in an unsupervised manner, which is expected to be beneficial in
terms of prediction accuracy. Indeed, as explained in the section 4.3 of the main paper, this unsupervised adaptation
allows us to find a compromise between the noisy observations and the Motion-DVAE output, depending on the
estimated noise variance. A lower variance will give more importance to the observations and vice versa.

We use the open-source implementations of SPIN [90], VIBE [95], and HuMoR [86] for comparing with SOTA
algorithms. We also include MVAE [96] in the comparison, but taking the results given in the paper of [86]. We do not
have the running time for this method, but we can assume that it is similar to HuMoR since MVAE can be thought of as
ablation of the HuMoR CVAE using the same optimization procedure. The running time of 2D keypoints detection
by off-the-shelf models is not considered in speed calculation since it is used by all methods. However, we add SPIN
execution time to our method for a fair comparison with SPIN [90] and other methods. Results are presented in Tab. 1.

Table 1: Results on i3DB: We compare the proposed method (bottom part) and SOTA (top part) performance in terms
of global and local Mean Per Joint Positional Error (MPJPE) (cm) and execution time (sec/frame) on visible (Vis) and
occluded (Occ) joints. We achieve an accuracy competitive with the SOTA methods while showing reasonably high
speed.

Speed ↓ G-MPJPE ↓ MPJPE ↓
(sec/frame) All Vis Occ All Vis Occ

SPIN [90] 0.05 - - - 14.95 11.89 23.90
VIBE [95] 0.02 116.46 90.05 192.55 15.08 12.06 23.78
MVAE [96] - 40.91 37.54 50.63 19.17 16.00 28.32

VPoser-t [86] 1.05 31.88 28.84 40.63 16.36 12.81 26.57
HuMoR [86] 11.37 28.68 26.01 36.37 15.29 12.57 23.10
SPIN-t (ours) 0.25 42.45 36.54 59.71 14.28 11.66 21.94

Regression (ours) 0.26 41.41 36.55 55.45 13.82 11.54 20.40
Optimization (ours) 0.56 41.09 36.01 55.78 14.08 11.48 21.58

We can notice that the proposed SPIN-t improves the SPIN predictions regarding the MPJPE by adjusting the global
rotation. SPIN-t outperforms all SOTA methods in terms of MPJPE. However, VPoser-t is more accurate globally (i.e.,
in terms of G-MPJPE) by about 8 cm.

Motion-DVAE outperforms all SOTA models by more than 1cm in terms of MPJPE. Regarding the global error,
Motion-DVAE is similar to MVAE and significantly outperforms VIBE, which gives inaccurate results for occluded
joints. HuMoR obtains better global predictions but is prohibitively slow for real-world applications.
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Table 2: Ablation study: MPJPE and G-MPJPE are in cm.

G-MPJPE MPJPE

Vis Occ Vis Occ
Full HuMoR [86] 26.01 36.37 12.57 23.10

Regression 36.55 55.45 11.54 20.40
Optimization 36.01 55.78 11.48 21.58

NN output Regression 39.54 56.64 13.69 22.32
Optimization 36.42 55.33 11.80 21.95

No prior HuMoR [86] 25.64 36.12 12.13 22.58
Regression 37.51 58.77 11.64 20.90

Optimization 36.75 58.68 11.56 21.74
No noisy train Regression 68.19 81.72 32.30 47.56

Optimization 39.97 57.64 12.26 22.49
Gaussian noise Optimization 35.84 56.93 11.52 21.76

Qualitative results are shown in Fig. 2. When there are no occlusions, all methods perform great visually. However, with
occlusions, there are clear differences between predictions. VIBE fails to estimate the global translation, and the arms
pose is not as accurate as other methods. Motion-DVAE and HuMoR give good local predictions, with more realistic
floor contacts for the latter. HuMoR seems to underestimate the distance between the person and the camera for global
predictions as the prediction looks closer than the person on the image, while Motion-DVAE predicted translation is a
bit too far relative to the camera. Qualitative results for videos are made available in the supplementary material.

H.2.2 Ablation study

We also perform an ablation study to evaluate the impact of the different components of the denoising procedure learned
in an unsupervised fashion. We chose i3DB [89] for the ablation study because this dataset has many occlusions,
enabling us to evaluate the model components for dealing with occlusions. Results are shown in Tab. 2. Most ablations
are tested in regression (Reg) and optimization modes (Opt), except for the last experiment, which only concerns the
optimization mode. Results are compared with the performance without any ablation (Full).

The first ablation experiment, "NN output", predicts the initial state, the latent motion, and the noise by taking directly
the expectations outputted by the associated inference model networks successively instead of sampling the approximate
posterior distributions as explained in the section 4.3 of the main paper. This approximation is made in most works, but
neural network decoders are not linear functions. Thus taking the expectation of the latent representation and decoding
it does not give the expectation of the network output. Results obtained without the proposed inference scheme are less
accurate by about 1.5 cm in the regression mode and 0.5 cm in the optimization mode.

Next, we remove LDVAE
KL (ϕ, ω) from the equation (13) of the main paper for both training and optimization ("No

prior"). We compare our results with HuMoR [86] by setting the motion prior weight to 0 in optimization mode.
Surprisingly, when removing the motion prior, HuMoR obtains better results for occluded and visible joints. On the
contrary, removing the motion prior penalizes our method in regression and optimization modes. In the optimization
mode, the results get better on every metric using the motion prior. This shows that the proposed motion prior is efficient
for unsupervised optimization.

In "No noisy train", we skip the unsupervised training step on noisy data: we perform direct inference and optimize
from Motion-DVAE learned on AMASS. As expected, the results deteriorate significantly in the regression mode
because we use a model trained on clean data for processing noisy observations. In optimization mode, we do not reach
the accuracy of the regression mode with no ablation. This demonstrates the efficiency of the introduced unsupervised
learning procedure for denoising new unknown motions.

Finally, in "Gaussian noise" we test the proposed approach in optimization mode using a Gaussian noise prior distribution
instead of Student-t. The results are improved on visible joints but deteriorate on occlusions. However, the results in the
regression mode are still better than the results in the optimization mode, which shows the excellent generalization of
the unsupervised learning approach.
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