
MOTION-DVAE: UNSUPERVISED LEARNING FOR FAST HUMAN
MOTION DENOISING - SUPPLEMENTARY MATERIAL

Anonymous author(s)

1 Motion-DVAE training

1.1 Implementation of the generative model

We recall the generative model of Motion-DVAE:

pθ(x1:T , z1:T |x0) = pθ(z1|x0)pθ(x1|z1, x0)
T∏

t=2

pθ(zt|z1:t−1, x0)pθ(xt|z1:t, x0), (1)

We implement pθ(xt|z1:t, x0) = N (xt;µθx(z1:t, x0), Id) with:

• hx0 = dini(x0),
• hxt = dhx(hxt−1, zt),
• µθx(h

x
t) = dx(h

x
t).

For pθ(zt|z1:t−1, x0) = N (zt;µθz (z1:t−1, x0), σθz (z1:t−1, x0)), we take:

• hz0 = dini(x0)

• hzt = dhz (hzt−1, zt)

• [µθz (h
z
t), σθz (h

z
t)] = dz(h

z
t)

dhx and dhz are recurrent neural networks and are both implemented with the same LSTM. dini, dx, and dz are MLPs
with 2 hidden layers using group normalization with 16 groups and ReLU activations. The latent dimension is 48, while
the LSTM hidden state dimension is 1024.

1.2 Implementation of the approximate posterior

The inference model is:
qϕ(z1:T |x0:T) = qϕ(z0|x0:T)

∏
t

qϕ(zt|z1:t−1, xt:T , x0). (2)

qϕ(zt|z1:t−1, xt:T , x0) = N (zt;µϕ(z1:t−1, xt:T , x0), σϕ(z1:t−1, xt:T , x0)) is implemented by:

• hglobt = [hlatt−1, h
data
t],

• hlat0 = eini(x0),

• hlatt = elath (hlatt−1, zt),

• hdata0 = 0,

• hdatat = edatah (hdatat+1 , xt),

• [µϕ(h
glob
t), σϕ(h

glob
t)] = eglob(h

glob
t).

elath and edatah are LSTM neural networks, while eini and eglob are MLPs. Implementations of LSTM and MLP are
similar to the generative model.

Motion-DVAE - Supplementary material

1.3 Loss function

From Eq. (1) and Eq. (2), following [2], the ELBO of Motion-DVAE is:

L(θ, ϕ;x0:T) =
T∑

t=1

Eqϕ [log pθ(xt|z1:t, x0)]−
T∑

t=1

Eqϕ [DKL(qϕ(zt|z1:t−1, xt:T , x0)||pθ(zt|z1:t−1, x0))]. (3)

We define the loss function of Motion-DVAE:

Ltrain(θ, ϕ;x0:T) = Lrec(θ, ϕ;x0:T) + LKL(θ, ϕ;x0:T) + Lreg(θ, ϕ;x0:T). (4)

The first term can be developed as:

Lrec(θ, ϕ;x0:T) = −
T∑

t=1

Eqϕ [log pθ(xt|x0, z1:t)]

= −
T∑

t=1

Eqϕ [logN (xt;µθx(z1:t, x0), Id)]

=

T∑
t=1

Eqϕ

[
∥ µθx(z1:t, x0)− xt ∥22

]
.

This is a reconstruction term between the input and the output of Motion-DVAE.

The second term is a Kullback-Leibler divergence pushing the posterior distribution towards the prior:

LKL(θ, ϕ;x0:T) =

T∑
t=1

Eqϕ [DKL(qϕ(zt|z1:t−1, xt:T , x0)||pθ(zt|z1:t−1, x0))].

We also add a regularization term using the SMPL model to enforce the final human mesh to be as close as possible to
the original mesh. It consists of a squared reconstruction error on meshes and joints:

Lreg(θ, ϕ;x0:T) =

T∑
t=1

Eqϕ

[
∥ Mβ(µθx(z1:t, x0))−Mβ(xt) ∥22

]
.

1.4 Learning settings

We train Motion-DVAE with sequences of 30 frames from the AMASS [4] dataset, previously downsampled to 30Hz.
Then, learning sequences last 1 second. We choose this duration because we argue that even if human motion can last
more than 1 second, direct dependencies between poses rarely exceeds 1 second. To ease learning, following [6], we
align the first frame of each sequence in the canonical coordinate frame, meaning that translation r0 and the first two
components of root-orient Φ0 are 0. This enables focusing on learning spatial-temporal dependencies independently
from the starting point of the motion, which makes the motion prior more general.

We use batches of 64 sequences and train Motion-DVAE for 200 epochs. Similar to HuMoR [6], we use Adamax [3]
with the same settings and learning rate decays. We also use KL-annealing [1] during the first 50 epochs. However, since
our model does not use past predictions for current state prediction, we do not need to perform scheduled sampling.

2 Unsupervised learned denoising posterior distribution

Let’s recall the joint distribution in the context of motion denoising:

pθ(y0:T , v0:T , z1:T |β, x0) = p(v0)p(y0|x0, β, v0)
T∏

t=1

pθ(zt|z1:t−1, x0)p(vt)pθ(yt|z1:t, β, vt, x0). (5)

2

Motion-DVAE - Supplementary material

We want to express the posterior distribution pθ(x0, β, z1:T , v0:T |y0:T):

pθ(x0, β, z1:T , v0:T |y0:T) = p(β|v0:T , z1:T , x0, y0:T)pθ(v0:T , z1:T , x0|y0:T)

= p(β|v0:T , z1:T , x0, y0:T)p(v0:T |z1:T , x0, y0:T)pθ(z1:T |x0, y0:T)p(x0|y0:T)

= p(β|v0:T , z1:T , x0, y0:T)
T∏

t=1

[
p(vt|z1:t, yt, x0)pθ(zt|z1:t−1, yt:T , x0)

]
p(v0|y0, x0)p(x0|y0:T)

≃ p(β|y0:T)
T∏

t=1

[
p(vt|z1:t, yt, x0)pθ(zt|z1:t−1, yt:T , x0)

]
p(v0|y0, x0)p(x0|y0:T).

As can be seen in the above calculations, we approximate the posterior of β. We choose to ignore the noise and the
latent motion to simplify the model. In practice, β is computed as the average of the observed sequence of body shapes.

As a reminder, we define the following approximate posterior:

q(x0, β, z1:T , v0:T |y0:T) = q(β|y0:T)
T∏

t=1

[
qγ(vt|z1:t, yt, x0)qϕ(zt|z1:t−1, yt:T , x0)

]
qγ(v0|y0, x0)qω(x0|y0:T). (6)

3 ELBO derivation and loss functions

For finetuning Motion-DVAE, we aim to minimize the Kullback-Leibler divergence:

min
ϕ,γ,ω

DKL(qϕ,γ,ω(x0, β, z1:T , v0:T |y0:T)||pθ(x0, β, z1:T , v0:T |y0:T)). (7)

We will do it by maximizing the ELBO:

L(ϕ, γ, ω) = Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T) [log pθ(y0:T , v0:T , z1:T , x0, β)− log qϕ,γ,ω(x0, β, z1:T , v0:T |y0:T)] . (8)

3.1 ELBO decomposition

One can notice that the first term of the ELBO involves the joint distribution defined in Eq. (5). Taking the logarithm
and expectation of this joint distribution, we obtain:

Eqϕ,γ,ω
[log p(v0) + log p(y0|x0, β, v0)] +

T∑
t=1

Eqϕ,γ,ω
[log pθ(zt|x0, z1:t−1) + log p(vt) + log pθ(yt|x0, z1:t, β, vt)] .

Similarly, the second term involves:

qϕ,γ,ω(x0, β, z1:T , v0:T |y0:T) = q(β|y0:T)
T∏

t=1

[
qγ(vt|z1:t, yt, x0)qϕ(zt|z1:t−1, yt:T , x0)

]
qγ(v0|y0, x0)qω(x0|y0:T),

which becomes after taking the logarithm and expectation:

Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T) [log q(β|y0:T) + log qγ(v0|y0, x0) + log qω(y0:T)]

+

T∑
t=1

Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T) [log qγ(vt|z1:t, yt, x0) + log qϕ(zt|z1:t−1, yt:T , x0)] .

3

Motion-DVAE - Supplementary material

The decomposed ELBO is then:

L(ϕ, γ, ω) = Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T)

[
log p(y0|x0, β, v0) +

T∑
t=1

log pθ(yt|z1:t, β, vt, x0)

]
+ Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T) [− log qω(x0|y0:T)]

+ Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T)

[
T∑

t=1

log pθ(zt|z1:t−1, x0)−
T∑

t=1

log qϕ(zt|z1:t−1, yt:T , x0)

]

+ Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T)

[
T∑

t=0

log p(vt)−
T∑

t=1

log qγ(vt|z1:t, yt, x0)

]
+ Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T) [− log q(β|y0:T)] ,

which can be rewritten as:

L(ϕ, γ, ω) = Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T)

[
log p(y0|x0, β, v0) +

T∑
t=1

log pθ(yt|z1:t, β, vt, x0)

]
− Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T) [log qω(x0|y0:T)]

− Eqϕ,γ,ω(x0,β,v0:T |z1:T ,y0:T)

[
DKL(

T∏
t=1

qϕ(zt|z1:t−1, yt:T , x0) ∥
T∏

t=1

pθ(zt|z1:t−1, x0))

]

− Eqϕ,γ,ω(x0,β,z1:T |v0:T ,y0:T)

[
DKL(

T∏
t=0

qγ(vt|z1:t, yt, x0) ∥
T∏

t=0

p(vt))

]
− Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T) [log q(β|y0:T)] .

3.2 ELBO terms calculation

3.2.1 Data commitment term

The first term is a data commitment term. We have:

Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T)

[
log p(y0|x0, β, v0) +

T∑
t=1

log pθ(yt|x0, z1:t, β, vt)

]

= Eqϕ,γ,ω

[
logN (y0;Mβ(x0), v0) +

T∑
t=1

logN (yt;Mβ(µθx(x0, z1:t)), vt))

]

=
1

2
Eqϕ,γ,ω

[∑
j,d

1

v0,j,d
(y0,j,d −Mβ(x0)j,d)

2 +
∑
t,j,d

1

vt,j,d
(yt,j,d −Mβ(µθx(x0, z1:t))j,d)

2

]

As expected, those are Mean Squared Errors weighted by the inverse of the variance.

3.2.2 Initial state predictor term

The second term is linked to the initial state predictor:

Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T) [log qω(x0|y0:T)] = Eqω(x0|y0:T) [log qω(x0|y0:T)] .

This term corresponds to the negative entropy of qω(x0|y0:T). We chose not to use it during learning because it would
increase the initial state predicted variance, which is not a desired behavior.

4

Motion-DVAE - Supplementary material

3.2.3 Motion prior term

The third term of the ELBO uses Motion-DVAE to implement a motion prior:

Eqϕ,γ,ω(x0,β,v0:T |z1:T ,y0:T)

[
DKL

(
T∏

t=1

qϕ(zt|z1:t−1, yt:T , x0) ∥
T∏

t=1

pθ(zt|z1:t−1, x0)

)]

=

T∑
t=1

Eqωqϕ

[
DKL

(
qϕ(zt|z1:t−1, yt:T , x0)||pθ(zt|x0, z1:t−1)

)]
=

T∑
t=1

Eqωqϕ

[
DKL

(
N (zt;µϕ(z1:t−1, xt:T , x0), σϕ(z1:t−1, xt:T , x0)) ∥ N (zt;µθz (z1:t−1, x0), σθz (z1:t−1, x0))

)]
= −1

2

T∑
t=1

Eqωqϕ

[
log

σµθz

σϕ
− 1 +

σϕ
σµθz

+
(µµθz

− µϕ)
2

σµθz

]
.

3.2.4 Noise prior term

The fourth term of the ELBO is a noise prior term:

Eqϕ,γ,ω(x0,β,z1:T |v0:T ,y0:T)

[
DKL(

T∏
t=0

qγ(vt|z1:t, yt, x0) ∥
T∏

t=0

p(vt)

]

=

T∑
t=1

Eqωqϕ [DKL(qγ(vt|z1:t, yt, x0) ∥ p(vt)]

=
∑
t,j,d

Eqωqϕ

[
DKL

(
IG (vt,j,d, αγ(z1:t, yt,j,d, x0), βγ(z1:t, yt,j,d, x0)) ∥ IG

(
vt,j,d,

λ

2
,
λ

2

))]

=
∑
t,j,d

Eqωqϕ

[(
αγ − λ

2

)
ψ (αγ)− log Γ (αγ) + log Γ

(
λ

2

)
+
λ

2

(
log βγ − log

λ

2

)
+ αγ

λ
2 − βγ

βγ

]
,

where Γ and ψ are the Gamma and Digamma functions.

3.2.5 Body shape term

The last term is about body shape:
Eqϕ,γ,ω(x0,β,z1:T ,v0:T |y0:T) [log q(β|y0:T)] = E

[
δ(β − β̄SPIN (y0:T))

]
Since that term does not depend on any learned parameter, we ignore it during training.

4 Final predictions from observations

4.1 Initial state

We start by predicting the initial state:
x̂3d0 = Eqω(x0|y0:T)[Mβ(x0)] ≃ Mβ(µω(y0:T)), (9)

where µω is the mean vector of qω(x0|y0:T).

4.2 Motion prediction

Then we need to compute x̂1:T = Epθ(x1:T |y0:T)[x1:T] where

p(x1:T |y0:T) =
∫
pθ(x1:T , x0, β, z1:T , v0:T |y0:T) dx0dβdz1:tdv0:T

=

∫
pθ(x1:T |x0, β, z1:T , v0:T , y0:T)pθ(x0, β, z1:T , v0:T |y0:T) dx0

dβdz1:tdv0:T

= Epθ(x0,β,z1:T ,v0:T |y0:T)

[
pθ(x1:T |x0, β, z1:T , v0:T , y0:T)

]
.

5

Motion-DVAE - Supplementary material

Approximating the posterior pθ(x0, β, z1:T , v0:T |y0:T) with qϕ,γ,ω we obtain:

x̂1:T = Eqϕ,γ,ω

[
Epθ(x1:T |x0,β,z1:T ,v0:T ,y0:T)[x1:T]

]
. (10)

We need to calculate pθ(x1:T |x0, β, z1:T , v0:T , y0:T):

log pθ(x1:T |x0, β, z1:T , v0:T , y0:T)
c
= log pθ(x1:T , x0, β, z1:T , v0:T , y0:T)
c
=
∑
t

log p(yt|xt, vt)pθ(xt|z1:T , x0)

=
∑
t

logN (yt;xt,diag(vt))N (xt;µθx , σθx),

where c
= denotes equality up to an additive constant that does not depend on x1:T . We can further develop the last line

and identify:

log pθ(x1:T |x0, β, z1:T , v0:T , y0:T) =
∑
t,j,d

logN
(
xt,j,d;

vt,j,d(µθx)j,d + (σθx)j,dyt,j,d
vt,j,d + (σθx)j,d

,
vt,j,d(σθx)j,d
vt,j,d + (σθx)j,d

)
.

This finally leads to:

x̂3dt,j,d = Eqϕ,γ,ω

[
vt,j,dMβ(µθx(x0, z1:t−1)j,d) + y3dt,j,d

vt,j,d + 1

]
. (11)

5 Unsupervised denoising learning

5.1 Neural networks implementation

During the unsupervised denoising training, we introduce 2 neural networks, an initial state predictor and a noise
predictor. Those 2 models were not necessary for training Motion-DVAE on clean motion capture data since x0 was
known and there was no noise in the observations.

As described in the main paper, the initial state predictor implements qω(x0|y0:T) = N (x0;µω(y0:T), σω(y0:T)). It is
implemented by:

• h0 = 0

• ht = rh(ht+1, yt)

• x̂0 = eini(hT)

rh is an anticausal LSTM neural network. We want it to take the observations y0:T backward in time because x0 should
depend more on y0 than on yT . eini is an MLP.

For the noise predictor, we implement qγ(vt|z1:t, yt, x0) =
∏

j,d IG (vt,j,d;αγ(z1:t, yt, x0), βγ(z1:t, yt, x0)) as fol-
lows:

• hz0 = dini(x0)

• hzt = dhz (hzt−1, zt)

• [αγ , βγ] = eb(ht, yt)

dini and dhz are the MLP and the LSTM neural networks previously defined for Motion-DVAE. eb is an MLP only
used by the noise predictor.

5.2 Learning settings

Unsupervised denoising training for regression mode is performed on training data for 500 epochs, with early stopping
when the validation loss does not improve for 10 epochs. Note that for noisy AMASS [4] data, the training converges in
about 50 epochs only, probably due to a large amount of training data. In optimization mode, we fix the number of
iterations (200 iterations on i3DB [5], and 50 for AMASS).

During unsupervised denoising learning, the decoder and prior networks are fixed, preserving the motion prior. We
optimize the weights of the encoder, initial state predictor, and noise predictor networks. As for training the original
Motion-DVAE, we use KL-annealing [1].

6

	Motion-DVAE training
	Implementation of the generative model
	Implementation of the approximate posterior
	Loss function
	Learning settings

	Unsupervised learned denoising posterior distribution
	ELBO derivation and loss functions
	ELBO decomposition
	ELBO terms calculation
	Data commitment term
	Initial state predictor term
	Motion prior term
	Noise prior term
	Body shape term

	Final predictions from observations
	Initial state
	Motion prediction

	Unsupervised denoising learning
	Neural networks implementation
	Learning settings

