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Given an image, the task is to recover a human 3D mesh following the 
SMPL1 topology.

Human 3D mesh recovery

1. Loper, Matthew, et al. "SMPL: A Skinned Multi-Person Linear Model." ACM Transactions on Graphics 34.6 (2015). 2

Human mesh recovery 
(HMR)
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An ambiguous problem

Many different 3D meshes yield the same 2D projection due to occlusions and 
depth ambiguity.

Single and multi-output methods propose different ways of addressing this 
issue.
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Single output methods

Give the most likely output

Efficiency and accuracy

● TokenHMR2 (CVPR’24)
● VQ-HPS3 (ECCV’24)

2. Dwivedi, Sai Kumar, et al. "TokenHMR: Advancing human mesh recovery with a tokenized pose representation." CVPR, 2024.
3. Fiche, Guénolé, et al. "VQ-HPS: Human pose and shape estimation in a vector-quantized latent space." ECCV, 2024.

Model
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Single output methods - Observation

Transformer

These recent SOTA approaches use Transformer-based architectures, and rely on a 
tokenized representation of human meshes.

Tokenizer 
decoder
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Single output methods

Transformer

These recent SOTA approaches use Transformer-based architectures, and rely on a 
tokenized representation of human meshes.

Tokenizer 
decoder
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Wishlist
❏ Tokenized latent space: implicit prior on human meshes
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Single output methods - Weaknesses

Despite tokenization, some sequences may correspond to unrealistic human meshes. 
Additionally, the diversity of meshes is very limited in HMR training sets.

Meshes obtained with purely random indices.
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Single output methods

Despite tokenization, some sequences may correspond to unrealistic human meshes. 
Additionally, the diversity of poses and shapes is very limited in HMR training sets.

Wishlist
❏ Tokenized latent space
❏ Motion capture pre-training: prior on token sequences
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Single output methods - Weaknesses

Overall, single output methods overlook the ambiguity issue. In some scenarios, the 
prediction may differ significantly from the ground truth.

Image, ground truth, and prediction of a single output model.
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Single output methods - Weaknesses

Overall, single output methods overlook the ambiguity issue. In some scenarios, the 
prediction may differ significantly from the ground truth.

Image, ground truth, and prediction of a single output model.

Wishlist
❏ Tokenized latent space

❏ Motion capture pre-training

❏ Generative model: multi-output HMR
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We predict multiple meshes per image using our method. The standard deviation of the vertices 
position can be interpreted as a measure of per-vertex uncertainty, highly related to ambiguity.

How do multi-output methods address ambiguity?
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Multi-output methods

Model

Set of potential solutions

Address the ambiguity

● Diff-HMR4 (ICCV’23)
● ScoreHypo5 (CVPR’24)

4. Cho, Hanbyel, and Junmo Kim. "Generative approach for probabilistic human mesh recovery using diffusion models." ICCV, 2023.
5. Xu, Yuan, et al. "ScoreHypo: Probabilistic human mesh estimation with hypothesis scoring." CVPR, 2024.
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Multi-output methods - Weaknesses

Diffusion 
model

These recent SOTA multi-output methods are based on diffusion models. Those 
models are powerful but have a high computational cost.
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Multi-output methods

Diffusion 
model

These recent SOTA multi-output methods are based on diffusion models. Those 
models are powerful but have a high computational cost.

Wishlist
❏ Tokenized latent space

❏ Motion capture pre-training

❏ Generative model

❏ Efficient, fast prediction
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Multi-output methods - Weaknesses

When making a single prediction, multi-output methods lack accuracy because giving 
a zero noise as an input does not necessarily give the most likely solution.

MPJPE on 3DPW (in mm)

Diff-HMR (single prediction) 98.9

VQ-HPS (same backbone and training data) 79.1
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Multi-output methods - Weaknesses

When making a single prediction, multi-output methods lack accuracy because giving 
a zero noise as an input does not necessarily give the most likely solution.

MPJPE on 3DPW (in mm)

Diff-HMR (single prediction) 98.9

VQ-HPS (same backbone and training data) 79.1

Wishlist
❏ Tokenized latent space

❏ Motion capture pre-training

❏ Generative model

❏ Efficient, fast prediction

❏ Single output: competitive with single output methods
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Wishlist
❏ Tokenized latent space

❏ Motion capture pre-training

❏ Generative model

❏ Efficient, fast prediction

❏ Single output

One approach that will allow us to check all these boxes is Masked 
Generative Modeling6.

6. Chang, Huiwen, et al. "MaskGIT: Masked generative image transformer." CVPR, 2022.



Overview of the contributions
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Masked generative modeling for HMR

Unconditional distribution of 3D meshes before conditioning on images

A single model for 3 different tasks:

Unconditional human 
mesh generation

Single output HMR Multi-output HMR



Self-supervised pre-training on human meshes
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We rely on Mesh-VQ-VAE3, that represents a human mesh as a sequence of 54 tokens.
MEGA is masked autoencoder7 in the space of tokenized meshes: it learns to recover 

human meshes given partial sequences of tokens.

3. Fiche, Guénolé, et al. "VQ-HPS: Human pose and shape estimation in a vector-quantized latent space." ECCV, 2024.
7. He, Kaiming, et al. "Masked autoencoders are scalable vision learners." CVPR,  2022.

Contribution 1
Contribution 2

MEGA
Mesh

VQ-VAE 
decoder
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MEGA is trained on AMASS with a single cross-entropy loss on the tokenized 
human meshes.



Masked generative modeling on human meshes
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Once pre-trained on motion capture data, MEGA can generate unconditional human 
meshes using the masked generative modeling6 strategy.

Contribution 1
Task 1

MEGA?
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…
6. Chang, Huiwen, et al. "MaskGIT: Masked generative image transformer." CVPR, 2022.

We start from a fully masked sequence and predict a distribution over indices for each 

token.



Masked generative modeling on human meshes
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Contribution 1
Task 1

MEGA?
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We sample the distributions, and keep the confidence value associated with the 
selected tokens.
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Masked generative modeling on human meshes
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Contribution 1
Task 1

We select the tokens with highest confidence values, freeze them for the next steps. 
Other tokens are masked and will be predicted in the next steps. 
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Masked generative modeling on human meshes
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Contribution 1
Task 1

MEGA5

?

32
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?

We feed the frozen tokens to our model and iterate this process until the sequence 
is predicted. We can then decode it to obtain the generated mesh.
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VQ-VAE 
decoder

iterative



Random human mesh generation
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Once we learnt the unconditional distribution of human meshes, we 
aim to condition the generation on an image.

Task 1



MEGA - Supervised fine-tuning for HMR
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We add image conditioning and learn to recover a human mesh from an image and a 
partial sequence of tokens.

Once again, our only loss for predicting human meshes is the cross-entropy.
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Single output HMR
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MEGA
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In order to obtain a single prediction, the tokens are selected with Argmax. We predict 
all tokens in a single forward pass (0.03 sec. with ResNet).
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Single output evaluation on 3DPW

2. Dwivedi, Sai Kumar, et al. "Tokenhmr: Advancing human mesh recovery with a tokenized pose representation." CVPR, 2024.
3. Fiche, Guénolé, et al. "VQ-HPS: Human pose and shape estimation in a vector-quantized latent space." ECCV, 2024.
8. Goel, Shubham, et al. "Humans in 4D: Reconstructing and tracking humans with transformers." ICCV, 2023.



Multi-output HMR
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MEGA
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To obtain diverse plausible predictions, we again use the masked generative modeling 
sampling scheme.

Predictions are made in only 5 iterations (0.04 sec. for 16 samples).

iterative



Multi-output HMR
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MEGA
Mesh

VQ-VAE 
decoder

?

?

?

…

?

Task 3

…

ar
gm

ax 5

?

32

…

?

To obtain diverse plausible predictions, we again use the masked generative modeling 
sampling scheme.

Predictions are made in only 5 iterations (0.04 sec. for 16 samples).

iterative

Wishlist
✓ Tokenized latent space

✓ Motion capture pre-training

✓ Generative model

✓ Efficient, fast prediction

✓ Single output
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Multi-output evaluation
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Multi-output evaluation

9. Kolotouros, Nikos, et al. "Probabilistic modeling for human mesh recovery." ICCV, 2021.
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Multi-output evaluation

5. Xu, Yuan, et al. "ScoreHypo: Probabilistic human mesh estimation with hypothesis scoring." CVPR, 2024.
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Why is masked generative modeling adapted to HMR?

In the first iteration, very few tokens with high confidence are predicted. The 
prediction is still close to the mean pose.
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Why is masked generative modeling adapted to HMR?

With only 10 predicted tokens, we start having a coarse prediction.

This is because the tokens with high influence on the pose are easier to 
predict, and are then fixed in the first steps.
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Why is masked generative modeling adapted to HMR?

In the last 3 iterations, the mesh becomes more and more plausible and 
aligned with the image.

The last predicted tokens correspond to fine-grained details, which are harder 
to predict.



Key takeaways
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MEGA is the first HMR approach based on masked generative 
modeling. It is trained with a single cross-entropy loss and can 
leverage human meshes with or without images.

Our flexible framework can be used for diverse applications:

Overall, MEGA is a step towards foundation models for 3D humans.



Thank you for your attention!
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